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The maximum principle is one of the most important properties of solutions of partial differential equations. 
To preserve this property on a discrete level is a challenging problem in many applications. The analog of 
the maximum principle for a discrete system is referred to as the DMP. In our research we investigate the 
conditions sufficient to ensure that the family of the MFD method contains a subfamily that satisfies DMP.

Standard discretization methods, such as Finite Element (FE) or 
Finite Volume (FV) methods, guarantee the discrete maximum 

principle (DMP) only under severe limitations on either the 
computational mesh or the material properties.  For isotropic materials, 
FE methods limit the angles of admissible simplices. FV methods 
require centroidal Voronoi meshes, where the line connecting the 
centers of two neighboring control volumes is orthogonal to its common 
face. For anisotropic materials (shale deposits in subsurface and 
magnetized plasma), the above requirements must be reformulated 
using the material-dependent anisotropic metric. A mesh that satisfies 
such requirements may exist only for academic problems with simple 
geometry. 

In more general settings when the computational mesh is distorted, or 
the problem coefficients are anisotropic, these methods may produce 
unphysical numerical solutions. A violation of the DMP leads to 
numerical instabilities, such as “overshoots” and “undershoots,” and to 
unphysical fluxes such as heat flow from a cold material to a hot one.

Recently developed nonlinear FV methods [1] can handle general types 
of meshes and material properties, but the “price” for this exceptional 
capability is the nonlinear nature of the methods, even in the case of 
linear problems. The nonlinearity of these methods results in an 
increase of computational cost of 5–20 times compared to its linear 
analogs. Therefore linear methods that satisfy the DMP principle are 
very valuable.

Discrete Maximum Principle in the Family of Mimetic Finite Difference Methods

The family of MFD methods consists of linear discretization methods 
that were designed to discretize diffusion-type problems with a full-
diffusion tensor on general polygonal/polyhedral meshes [2]. In 
particular, MFD methods can be applied to the diffusion-type problems 
written in the mixed form as follows: 
		  u = –Kgradr   and    divu = Q.

where r is an unknown scalar variable referred to as pressure, u is an 
unknown flux vector field, K is a diffusion tensor, and Q is a source 
function.

The approximation of the divergence operator is similar in many 
approaches and is based on the divergence theorem. The key element of 
the MFD method is the approximation of the gradient operator, which is 
not unique. This fact allows one to locally tune the discretization method 
to adapt it to media properties and cell geometry.  In the family of MFD 
methods, the definition of the discrete gradient operator depends on the 
set parameters, and a particular choice of these parameters defines a 
member in the family. The discrete gradient operator can be defined 
locally and the number of local parameters depends on a cell type. Here 
we present the dimension of local parameter spaces for several cell 
types, shown in Table 1.
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Table 1. Number of discretization parameters for different cell types.

Cell
Number of  
Parameters

1

3

6

6

Different formulations of a DMP are possible since they can be derived 
from different formulations of the continuous maximum principle. One of 
the possible formulations of a DMP is based on the non-negativity of the 
inverse of the stiffness matrix. The discretization method that satisfies 
this property is referred to as a monotone method. An effective way to 
ensure monotonicity is to construct a discretization method that resolves 
into the algebraic system with an M-matrix. We choose several types of 
cells of practical importance, including simplices, parallelograms, 
parallelepipeds, and cells in adaptive mesh refinement (AMR) meshes, 
in order to formulate the limits for when a monotone subfamily exists 
(see [3]). We propose the choice of discretization parameters that lead to 
a monotone discretization method for a particular mesh type. In Fig. 1 
we present the comparison between the standard MFD method described 
in [2] and the monotone MFD method for the problem defined on AMR 
mesh. The numerical results show that the monotone MFD method 
satisfies the DMP and does not compromise the accuracy of the method, 
while the standard approach fails.

Fig. 1. (Top) The profile of the solution 
on the AMR grid for the problem with 
an anisotropic diffusion tensor and a 
heterogeneous source function. (Center) 
The standard MFD method produces the 
solution with large subdomains of 
“overshoots” (red) and “undershoots” 
(blue), while the monotone MFD method 
produces an oscillation-free solution. 
(Bottom) The monotone MFD method 
provides the solution that not only 
satisfies the DMP, but also is more 
accurate on coarser grids.
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